3.5.94 \(\int \sqrt {a+b \sin ^2(e+f x)} \tan ^4(e+f x) \, dx\) [494]

3.5.94.1 Optimal result
3.5.94.2 Mathematica [A] (verified)
3.5.94.3 Rubi [A] (verified)
3.5.94.4 Maple [A] (verified)
3.5.94.5 Fricas [F]
3.5.94.6 Sympy [F]
3.5.94.7 Maxima [F]
3.5.94.8 Giac [F]
3.5.94.9 Mupad [F(-1)]

3.5.94.1 Optimal result

Integrand size = 25, antiderivative size = 234 \[ \int \sqrt {a+b \sin ^2(e+f x)} \tan ^4(e+f x) \, dx=\frac {(7 a+8 b) \sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 (a+b) f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}-\frac {4 a \sqrt {\cos ^2(e+f x)} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{3 f \sqrt {a+b \sin ^2(e+f x)}}-\frac {(3 a+4 b) \sqrt {a+b \sin ^2(e+f x)} \tan (e+f x)}{3 (a+b) f}+\frac {\sqrt {a+b \sin ^2(e+f x)} \tan ^3(e+f x)}{3 f} \]

output
1/3*(7*a+8*b)*EllipticE(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x+e)^2) 
^(1/2)*(a+b*sin(f*x+e)^2)^(1/2)/(a+b)/f/(1+b*sin(f*x+e)^2/a)^(1/2)-4/3*a*E 
llipticF(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x+e)^2)^(1/2)*(1+b*sin 
(f*x+e)^2/a)^(1/2)/f/(a+b*sin(f*x+e)^2)^(1/2)-1/3*(3*a+4*b)*(a+b*sin(f*x+e 
)^2)^(1/2)*tan(f*x+e)/(a+b)/f+1/3*(a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e)^3/f
 
3.5.94.2 Mathematica [A] (verified)

Time = 2.44 (sec) , antiderivative size = 198, normalized size of antiderivative = 0.85 \[ \int \sqrt {a+b \sin ^2(e+f x)} \tan ^4(e+f x) \, dx=\frac {2 a (7 a+8 b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )-8 a (a+b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right )-\frac {\left (8 a^2+12 a b+b^2+4 \left (4 a^2+6 a b+b^2\right ) \cos (2 (e+f x))-b (4 a+5 b) \cos (4 (e+f x))\right ) \sec ^2(e+f x) \tan (e+f x)}{2 \sqrt {2}}}{6 (a+b) f \sqrt {2 a+b-b \cos (2 (e+f x))}} \]

input
Integrate[Sqrt[a + b*Sin[e + f*x]^2]*Tan[e + f*x]^4,x]
 
output
(2*a*(7*a + 8*b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f*x, 
 -(b/a)] - 8*a*(a + b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticF[e 
+ f*x, -(b/a)] - ((8*a^2 + 12*a*b + b^2 + 4*(4*a^2 + 6*a*b + b^2)*Cos[2*(e 
 + f*x)] - b*(4*a + 5*b)*Cos[4*(e + f*x)])*Sec[e + f*x]^2*Tan[e + f*x])/(2 
*Sqrt[2]))/(6*(a + b)*f*Sqrt[2*a + b - b*Cos[2*(e + f*x)]])
 
3.5.94.3 Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.04, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3675, 369, 440, 25, 399, 323, 321, 330, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tan ^4(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \tan (e+f x)^4 \sqrt {a+b \sin (e+f x)^2}dx\)

\(\Big \downarrow \) 3675

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \int \frac {\sin ^4(e+f x) \sqrt {b \sin ^2(e+f x)+a}}{\left (1-\sin ^2(e+f x)\right )^{5/2}}d\sin (e+f x)}{f}\)

\(\Big \downarrow \) 369

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {\sin ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 \left (1-\sin ^2(e+f x)\right )^{3/2}}-\frac {1}{3} \int \frac {\sin ^2(e+f x) \left (4 b \sin ^2(e+f x)+3 a\right )}{\left (1-\sin ^2(e+f x)\right )^{3/2} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)\right )}{f}\)

\(\Big \downarrow \) 440

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {1}{3} \left (-\frac {\int -\frac {b (7 a+8 b) \sin ^2(e+f x)+a (3 a+4 b)}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{a+b}-\frac {(3 a+4 b) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{(a+b) \sqrt {1-\sin ^2(e+f x)}}\right )+\frac {\sin ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 \left (1-\sin ^2(e+f x)\right )^{3/2}}\right )}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {1}{3} \left (\frac {\int \frac {b (7 a+8 b) \sin ^2(e+f x)+a (3 a+4 b)}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{a+b}-\frac {(3 a+4 b) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{(a+b) \sqrt {1-\sin ^2(e+f x)}}\right )+\frac {\sin ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 \left (1-\sin ^2(e+f x)\right )^{3/2}}\right )}{f}\)

\(\Big \downarrow \) 399

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {1}{3} \left (\frac {(7 a+8 b) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)-4 a (a+b) \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{a+b}-\frac {(3 a+4 b) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{(a+b) \sqrt {1-\sin ^2(e+f x)}}\right )+\frac {\sin ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 \left (1-\sin ^2(e+f x)\right )^{3/2}}\right )}{f}\)

\(\Big \downarrow \) 323

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {1}{3} \left (\frac {(7 a+8 b) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)-\frac {4 a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}d\sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}}{a+b}-\frac {(3 a+4 b) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{(a+b) \sqrt {1-\sin ^2(e+f x)}}\right )+\frac {\sin ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 \left (1-\sin ^2(e+f x)\right )^{3/2}}\right )}{f}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {1}{3} \left (\frac {(7 a+8 b) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)-\frac {4 a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{\sqrt {a+b \sin ^2(e+f x)}}}{a+b}-\frac {(3 a+4 b) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{(a+b) \sqrt {1-\sin ^2(e+f x)}}\right )+\frac {\sin ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 \left (1-\sin ^2(e+f x)\right )^{3/2}}\right )}{f}\)

\(\Big \downarrow \) 330

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {1}{3} \left (\frac {\frac {(7 a+8 b) \sqrt {a+b \sin ^2(e+f x)} \int \frac {\sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{\sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}-\frac {4 a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{\sqrt {a+b \sin ^2(e+f x)}}}{a+b}-\frac {(3 a+4 b) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{(a+b) \sqrt {1-\sin ^2(e+f x)}}\right )+\frac {\sin ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 \left (1-\sin ^2(e+f x)\right )^{3/2}}\right )}{f}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {1}{3} \left (\frac {\frac {(7 a+8 b) \sqrt {a+b \sin ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{\sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}-\frac {4 a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{\sqrt {a+b \sin ^2(e+f x)}}}{a+b}-\frac {(3 a+4 b) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{(a+b) \sqrt {1-\sin ^2(e+f x)}}\right )+\frac {\sin ^3(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 \left (1-\sin ^2(e+f x)\right )^{3/2}}\right )}{f}\)

input
Int[Sqrt[a + b*Sin[e + f*x]^2]*Tan[e + f*x]^4,x]
 
output
(Sqrt[Cos[e + f*x]^2]*Sec[e + f*x]*((Sin[e + f*x]^3*Sqrt[a + b*Sin[e + f*x 
]^2])/(3*(1 - Sin[e + f*x]^2)^(3/2)) + (-(((3*a + 4*b)*Sin[e + f*x]*Sqrt[a 
 + b*Sin[e + f*x]^2])/((a + b)*Sqrt[1 - Sin[e + f*x]^2])) + (((7*a + 8*b)* 
EllipticE[ArcSin[Sin[e + f*x]], -(b/a)]*Sqrt[a + b*Sin[e + f*x]^2])/Sqrt[1 
 + (b*Sin[e + f*x]^2)/a] - (4*a*(a + b)*EllipticF[ArcSin[Sin[e + f*x]], -( 
b/a)]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/Sqrt[a + b*Sin[e + f*x]^2])/(a + b)) 
/3))/f
 

3.5.94.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 323
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + ( 
d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 330
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]   Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^ 
2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ[a, 
0]
 

rule 369
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(2* 
b*(p + 1))), x] - Simp[e^2/(2*b*(p + 1))   Int[(e*x)^(m - 2)*(a + b*x^2)^(p 
 + 1)*(c + d*x^2)^(q - 1)*Simp[c*(m - 1) + d*(m + 2*q - 1)*x^2, x], x], x] 
/; FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 0 
] && GtQ[m, 1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 399
Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_) 
^2]), x_Symbol] :> Simp[f/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] + 
 Simp[(b*e - a*f)/b   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; Fr 
eeQ[{a, b, c, d, e, f}, x] &&  !((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && 
(PosQ[d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c])))))
 

rule 440
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[g*(b*e - a*f)*(g*x)^(m - 1)*(a + 
 b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*b*(b*c - a*d)*(p + 1))), x] - Simp[ 
g^2/(2*b*(b*c - a*d)*(p + 1))   Int[(g*x)^(m - 2)*(a + b*x^2)^(p + 1)*(c + 
d*x^2)^q*Simp[c*(b*e - a*f)*(m - 1) + (d*(b*e - a*f)*(m + 2*q + 1) - b*2*(c 
*f - d*e)*(p + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, q}, x] && 
 LtQ[p, -1] && GtQ[m, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3675
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^ 
(m_), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff^(m + 1 
)*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x]))   Subst[Int[x^m*((a + b*ff^2*x^2) 
^p/(1 - ff^2*x^2)^((m + 1)/2)), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b 
, e, f, p}, x] && IntegerQ[m/2] &&  !IntegerQ[p]
 
3.5.94.4 Maple [A] (verified)

Time = 4.57 (sec) , antiderivative size = 380, normalized size of antiderivative = 1.62

method result size
default \(-\frac {\sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, b \left (4 a +5 b \right ) \left (\cos ^{4}\left (f x +e \right )\right ) \sin \left (f x +e \right )-2 \sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, \left (2 a^{2}+5 a b +3 b^{2}\right ) \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )-\sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, \sqrt {-\frac {b \left (\cos ^{2}\left (f x +e \right )\right )}{a}+\frac {a +b}{a}}\, a \left (4 F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a +4 F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b -7 E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a -8 E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b \right ) \left (\cos ^{2}\left (f x +e \right )\right )+\sqrt {-b \left (\cos ^{4}\left (f x +e \right )\right )+\left (a +b \right ) \left (\cos ^{2}\left (f x +e \right )\right )}\, \left (a^{2}+2 a b +b^{2}\right ) \sin \left (f x +e \right )}{3 \sqrt {-\left (a +b \left (\sin ^{2}\left (f x +e \right )\right )\right ) \left (\sin \left (f x +e \right )-1\right ) \left (1+\sin \left (f x +e \right )\right )}\, \left (a +b \right ) \left (\sin \left (f x +e \right )-1\right ) \left (1+\sin \left (f x +e \right )\right ) \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f}\) \(380\)

input
int((a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e)^4,x,method=_RETURNVERBOSE)
 
output
-1/3*((-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*b*(4*a+5*b)*cos(f*x+e)^4* 
sin(f*x+e)-2*(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*(2*a^2+5*a*b+3*b^2 
)*cos(f*x+e)^2*sin(f*x+e)-(cos(f*x+e)^2)^(1/2)*(-b*cos(f*x+e)^4+(a+b)*cos( 
f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*a*(4*EllipticF(sin(f*x+e 
),(-1/a*b)^(1/2))*a+4*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*b-7*EllipticE(s 
in(f*x+e),(-1/a*b)^(1/2))*a-8*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*b)*cos( 
f*x+e)^2+(-b*cos(f*x+e)^4+(a+b)*cos(f*x+e)^2)^(1/2)*(a^2+2*a*b+b^2)*sin(f* 
x+e))/(-(a+b*sin(f*x+e)^2)*(sin(f*x+e)-1)*(1+sin(f*x+e)))^(1/2)/(a+b)/(sin 
(f*x+e)-1)/(1+sin(f*x+e))/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f
 
3.5.94.5 Fricas [F]

\[ \int \sqrt {a+b \sin ^2(e+f x)} \tan ^4(e+f x) \, dx=\int { \sqrt {b \sin \left (f x + e\right )^{2} + a} \tan \left (f x + e\right )^{4} \,d x } \]

input
integrate((a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e)^4,x, algorithm="fricas")
 
output
integral(sqrt(-b*cos(f*x + e)^2 + a + b)*tan(f*x + e)^4, x)
 
3.5.94.6 Sympy [F]

\[ \int \sqrt {a+b \sin ^2(e+f x)} \tan ^4(e+f x) \, dx=\int \sqrt {a + b \sin ^{2}{\left (e + f x \right )}} \tan ^{4}{\left (e + f x \right )}\, dx \]

input
integrate((a+b*sin(f*x+e)**2)**(1/2)*tan(f*x+e)**4,x)
 
output
Integral(sqrt(a + b*sin(e + f*x)**2)*tan(e + f*x)**4, x)
 
3.5.94.7 Maxima [F]

\[ \int \sqrt {a+b \sin ^2(e+f x)} \tan ^4(e+f x) \, dx=\int { \sqrt {b \sin \left (f x + e\right )^{2} + a} \tan \left (f x + e\right )^{4} \,d x } \]

input
integrate((a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e)^4,x, algorithm="maxima")
 
output
integrate(sqrt(b*sin(f*x + e)^2 + a)*tan(f*x + e)^4, x)
 
3.5.94.8 Giac [F]

\[ \int \sqrt {a+b \sin ^2(e+f x)} \tan ^4(e+f x) \, dx=\int { \sqrt {b \sin \left (f x + e\right )^{2} + a} \tan \left (f x + e\right )^{4} \,d x } \]

input
integrate((a+b*sin(f*x+e)^2)^(1/2)*tan(f*x+e)^4,x, algorithm="giac")
 
output
integrate(sqrt(b*sin(f*x + e)^2 + a)*tan(f*x + e)^4, x)
 
3.5.94.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+b \sin ^2(e+f x)} \tan ^4(e+f x) \, dx=\int {\mathrm {tan}\left (e+f\,x\right )}^4\,\sqrt {b\,{\sin \left (e+f\,x\right )}^2+a} \,d x \]

input
int(tan(e + f*x)^4*(a + b*sin(e + f*x)^2)^(1/2),x)
 
output
int(tan(e + f*x)^4*(a + b*sin(e + f*x)^2)^(1/2), x)